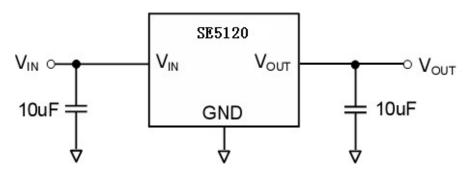


General Description

The SE5120 series of fixed output ultra low dropout linear regulators are designed for portable battery powered applications, which require low power consumption and low dropout voltage. Each device contains a bandgap voltage reference, an error amplifier, a PMOS power transistor, and current limit and temperature limit protection circuits.

The SE5120 is designed to work with low cost electrolytic and ceramic capacitors and requires a minimum output capacitor of $10\mu F$.

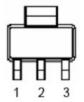

Features

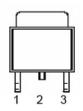
- Typical 150mV Dropout Voltage at 500mA.
- Output Voltages: 0.8V to 3.9V (0.1V Step)
- Excellent Line and Load Regulation.
- High Accuracy Output Voltage of 2%.
- Ultra-Low Ground Current at 150µA (Typ.)
- Thermal and Over-Current Protection.
- Short Circuit Protection
- Standard SOT-223 and TO-252 Package.

Applications

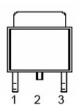
- USB removable devices
- MPEG4 devices
- Wireless LAN's
- Hand-Held Instrumentation.
- Portable DVD players
- Digital camera

Typical Application


Pin Configuration

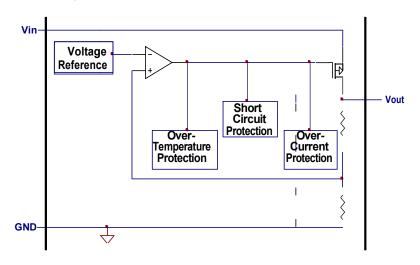

SE5120STXX 1:GND, 2:OUT, 3:IN

SOT -223 (Top View)


SE5120SGXX 1:IN, 2:GND, 3:OUT

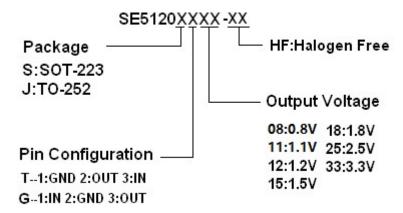
SE5120JTXX 1:GND, 2:OUT, 3:IN

TO-252 (Top View)



SE5120JGXX 1:IN, 2:GND, 3:OUT

Pin Description


Pin Name	Pin Function Description
GND	Groung
OUT	Output Voltage
IN	Input Voltage

Functional Block Diagram

1.5A CMOS Ultra LDO Voltage Regulator

Ordering Information

Device	Marking Information	Package	Remarks
SE5120STxx-HF	SE5120TXX-YYWW-HF	SOT-223	
SED5120SGxx-HF	SE5120GXX-YYWW-HF	301-223	YYWW means Production batch
SE5120JTxx-HF	SE5120TXX-YYWW-HF	TO 252	XX denotes voltage options
SE5120JGxx-HF	SE5120GXX-YYWW-HF	TO-252	

Absolute Maximum Ratings

Parameter	Symbol	Value	Units	
Input Voltage	Vin	6	\ \	
Output Voltage Range	Vout	-0.3 to V _{IN}	\ \	
Power Dissipation	P _D	Internally Limited (3)		
Output Short Circuit Duration		Infinite		
Thermal Desigtance Junction to Ambient	0	155(SOT-223)	°C/W	
Thermal Resistance, Junction-to-Ambient	Θја	90(TO-252)		
Lead Temperature (Soldering, 5 sec.)		260	°C	
Junction Temperature Range	TJ	0 to +150	°C	
Storage Temperature Range	Ts	-40 to +150	°C	

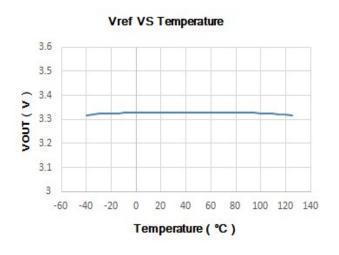
Recommended Operating Conditions

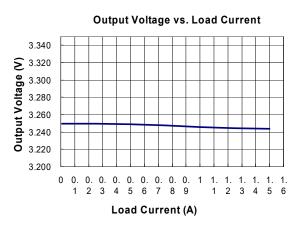
Parameter	Symbol	Value	Units
Supply Input Voltage Range	V _{IN}	5	٧
Junction Temperature Range	TJ	0 to +125	°C

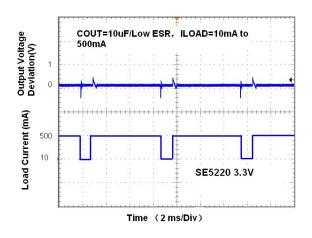
1.5A CMOS Ultra LDO Voltage Regulator

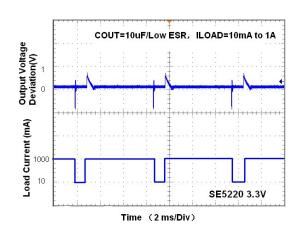
Electrical Characteristics

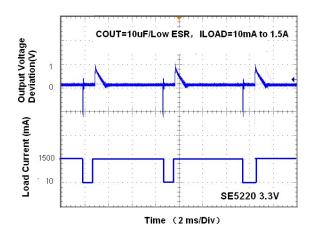
 $(V_{IN} = 5V; C_{IN} = 10\mu F; C_{OUT} = 10\mu F; I_{OUT} = 10mA; T_J = 25^{\circ}C; unless otherwise noted)$

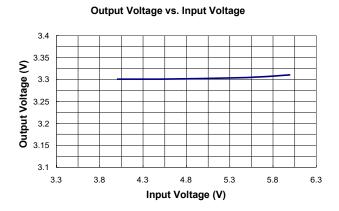

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
		SE5120XX12	1.176	1.2	1.224	
	Output Voltage Accuracy	SE5120XX15	1.47	1.5	1.53	
Vouт		SE5120XX18	1.764	1.8	1.836	V
		SE5120XX25	2.45	2.5	2.55	
		SE5120XX33	3.234	3.3	3.366	
ΔVουτ/Vουτ	Line Regulation	$V_{IN} = (V_{OUT} + 0.7)V$ to 5.5V		0.1		%/V
ΔVουτ/Vουτ	Load Regulation ⁽⁵⁾	$V_{IN} = (V_{OUT} + 0.7)V$ $I_{OUT} = 10mA \text{ to } 1500mA$	-	2		%
ΔV _{ουτ} /ΔΤ	Output Voltage	Note 4		0.1		mV/°
Δνουτ/Δι	Temperature Coefficient	Note 4		0.1		С
		I _{OUT} = 150mA		40		mV
V _{IN} – V _{OUT}	Dropout Voltage (6)	I _{OUT} = 500mA		150		
		I _{OUT} = 1000mA		300		
т	Thermal Protection	Thermal Protection Temperature		150		°C
T _{PROTECTION}		Protection Hysterisys		30		
ΙQ	Quiescent Current	I _{OUT} = 0mA		150		μA
I _{LIMIT}	Current Limit			2.5		Α
I _{short}	Short Circuit Current	Vin=Vout+1V; Vout< 0.4V		0.55		Α


- Note 1: Exceeding the absolute maximum rating may damage the device.
- **Note 2:** The device is not guaranteed to function outside its operating rating.
- Note 3: The maximum allowable power dissipation at any T_A (ambient temperature) is calculated using: P_{D(MAX)} = (T_{J(MAX)} - T_A)/O_{JA}. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See "Thermal Consideration" section for details
- Note 4: Output voltage temperature coefficient is the worst case voltage change divided by the total temperature range.
- Note 5: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 1200mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- Note 6: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.


SE5120




Typical Performance Characteristics



Applications Information

Application Hints

Like any low dropout regulator, SE5120 requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance.

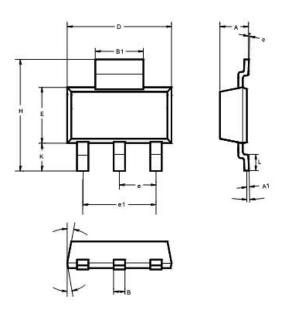
Input Capacitor

An input capacitor of at least $10\mu F$ is required. Ceramic or Tantalum can be used. The value can be increase without upper limit.

Output Capacitor

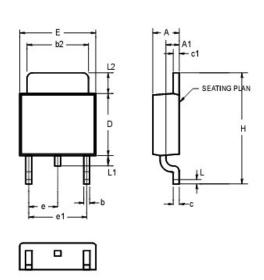
An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The minimum value is $10\mu F$ but may be increase without limit.

Thermal Considerations


It is important that the thermal limit of the package is not exceeded. The SE5120 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following:

The power dissipation (P_D) is $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$

The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, TA is the ambient temperature, and Θ_{JA} is around 155°C/W(SOT-223) for SE5120. SE5120 is designed to enter thermal protection at 170°C. For example, if T_A is 25°C then the maximum P_D is limited to about 0.94W. In other words, if $I_{OUT(MAX)} = 1200$ mA, then $[V_{IN} - V_{OUT}]$ cannot exceed 780mV.



Outline Drawing For SOT-223

	M	ILLIMETE	RS
	MIN	TYP	MAX
Α	1.50	1.65	1.80
A1	0.02	0.05	0.08
В	0.60	0.70	0.80
B1	2.90	150	3.15
С	0.28	0.30	0.32
D	6.30	6.50	6.70
E	3.30	3.50	3.70
е		2.3 BSC	7.7
e1	3	4.6 BSC	
н	6.70	7.00	7.30
L	0.91	1.00	1.10
K	1.50	1.75	2.00
α	0°	5°	10°
β		3°	

Outline Drawing For TO-252

	INCHES			MIL	LIME	TERS
	MIN	TYP	MAX	MIN	TYF	MAX
Α	0.086	-1	0.094	2.18	10-3	2.39
A1	0.040	-1	0.050	1.02	15-3	1.27
b		0.024	-		0.6	1 -
b2	0.205	+0	0.215	5.21	(-)	5.46
С	0.018	-	0.023	0.46	85	0.58
c1	0.018	-	0.023	0.46	8.53	0.58
D	0.210	· P	0.220	5.33	-	5.59
Е	0.250	7.0	0.265	6.35	:-:	6.73
е	0.090 BSC			2.29 BSC		
e1	0.	С	4.58 BSC			
н	0.370	7/	0.410	9.40	7/	10.41
L	0.020	2	-	0.51	2	° •
L1	0.025	2	0.040	0.64	21	1.02
L2	0.060	-	0.080	1.52	-	2.03

联系方式:

北京思旺电子技术有限公司-中国总部

地址:中国北京市海淀区信息路 22 号上地科技综合楼 B 座二层

邮编: 100085

电话: 010-82895700/1/5 传真: 010-82895706

邮箱: sales@seawardinc.com.cn

Seaward Electronics Incorporated – 北美办事处

1512 Centre Pointe Dr. Milpitas, CA95035, USA

电话: 1-650-444-0713