

Description

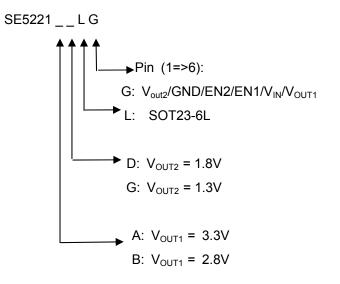
SE5221 is a dual-channel low dropout regulator supplying up to 200mA at each channel. The output voltages are selectable between 2.8V/3.3V for Channel-1 and 1.3V/1.8V for Channel-2 with 3% accuracy.

The SE5221 uses internal PMOS transistors as the pass devices to regulate the output voltages. The IC consumes 120µA supply current when both channels are turned on, and is nearly independent of load currents and dropout conditions. The EN1 and EN2 pins allows for individual channel controls. When both outputs are shut down simultaneously, the chip will be turned off and consumes nearly zero operating current which is suitable for battery-power devices. Other features include a current limiting, and over temperature protection.

Pin Configuration

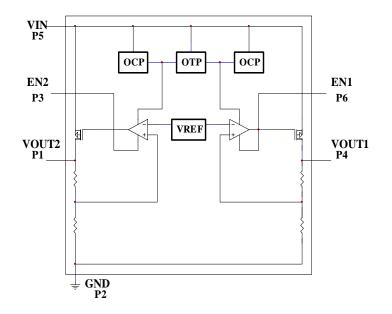
Application Diagram

Revision 9/4/2008


Features

- Typical 256mV Dropout Voltage at 200mA
- Up to 200mA Output Current (Each Channel)
- Low Ground Current at 120uA (Typ.)
- > Dual Shutdown Pins to Control Each Output
- Current Limiting and Thermal Protection
- Two LDOs in SOT-23-6L Package
- > 100% Lead (Pb)-Free

Application


- Cellular Phones.
- > Laptop, Notebook, and Palmtop Computers.
- Battery-Powered Equipments.
- Hand-held Equipments.
- Wireless LAN Devices.

Ordering Information

Block Diagram

Functional Pin Desciption

-					
Pin No.	Pin Name	Pin Function			
1	VOUT2	Channel 2 Output Voltage			
2	GND	Common Ground			
3	EN2	Chip Enable (Active High)			
4	EN1	Chip Enable (Active High)			
5	VIN	Supply Input			
6	VOU1	Channel 1 Output Voltage			

Ordering/Marking Information

Package	Orderin	g Information	Marking Information		
SOT-23-6	Vout1=3.3V Vout2=1.8V	SE5221ADLG-LF	21ADLz	The last character is the	
VOUT2 1 0 6 VOUT1 GND 2 5 VIN	Vout1=2.8V Vout2=1.8V	SE5221BDLG-LF	21BDLz	batch number. A dot on top right corner	
EN2 3 4 EN1	Vout1=3.3V Vout2=1.3V	SE5221AGLG-LF	21AGLz	is for lead-free process.	
Top View	Vout1=2.8V Vout2=1.3V	SE5221BGLG-LF	21BGLz [●]	LF: lead free.	

Absolute Maximum Rating (1)

Parameter	Symbol	Value	Units
Input Voltage	V _{IN}	6	V
Enable Voltage	V _{EN}	-0.3 to V_{IN}	V
Power Dissipation	PD	Internally Limited ⁽³⁾	
Thermal Resistance Junction-to-Ambient	Θ _{JA}	230 (SOT-23-6)	°C/W
Lead Temperature (Soldering, 5 sec.)		260	°C
Junction Temperature	TJ	+150	°C
Storage Temperature	Ts	-40 to +150	°C

Operating Rating⁽²⁾

Parameter	Symbol	Value	Units
Supply Input Voltage	V _{IN}	+3.3V to +5.5	V
Junction Temperature	TJ	0 to +125	°C

Electrical Characteristics

 $V_{\text{IN}} = Vout + 1V; V_{\text{EN1}} = V_{\text{EN2}} = V_{\text{IN}}; I_{\text{OUT}} = 10\text{mA}, C_{\text{IN}} = 2.2\mu\text{F}; C_{\text{OUT}} = 2.2\mu\text{F}; T_{\text{J}} = 25^{\circ}\text{C}; \text{unless otherwise specified}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{OUT}	Output Voltage Accuracy	Channel 1 SE5221 – 2.8V SE5221 – 3.3V	2.716 3.201	2.8 3.3	2.884 3.399		
		Channel 2 SE5221 – 1.3V SE5221 – 1.8V	1.261 1.746	1.3 1.8	1.339 1.854	V	
ΔV _{OUT} /V _{OUT}	Line Regulation	Channel 1 V _{IN} = (V _{OUT} +0.4)V to 5.5V		0.14			
		Channel 2 V _{IN} =(V _{OUT} +0.4)V to 5.5V		0.14		%/V	
ΔV _{OUT} /V _{OUT}	Load Regulation ⁽⁵⁾	Channel 1 I _{OUT} = 1mA to 200mA		0.66		%	
		Channel 2 I _{OUT} = 1mA to 200mA		1.32		<i>,</i> ,,	

Electrical Characteristics (Continued)

$V_{IN} = Vout+1V; V_{EN1} = V_{EN2} = V_{IN}; I_{OUT} = 10r$	mA, $C_{IN} = 2.2\mu$ F; $C_{OUT} = 2.2\mu$ F; $T_J = 25^{\circ}$ C; unless otherwise specified
	······································

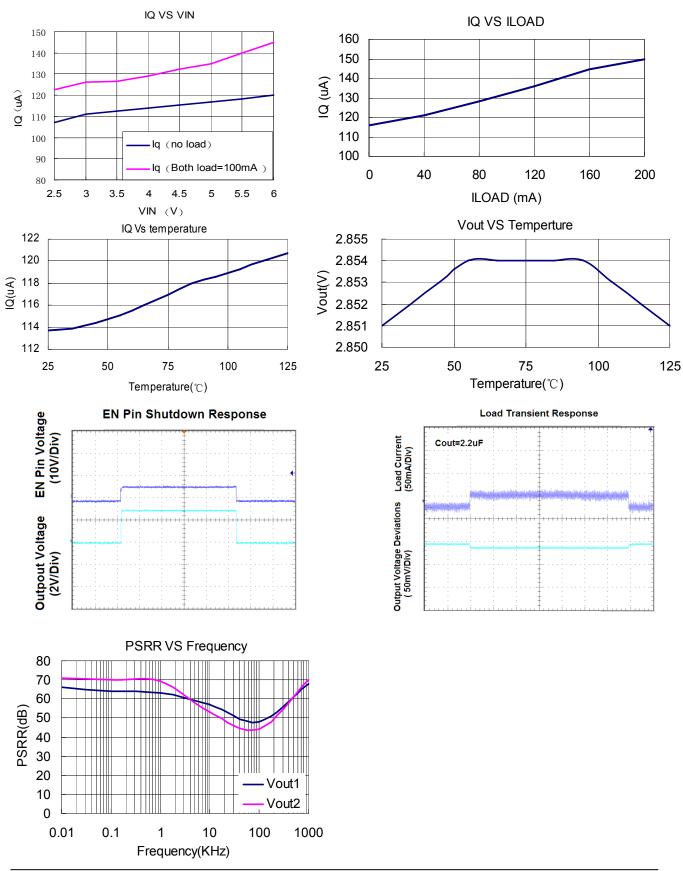
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
	Output Voltage	Channel 1			-0.025		
ΔV _{ΟυΤ} /ΔΤ	Temperature Coefficient ⁽⁴⁾	Chann	el 2		-0.63		mV/°C
		Obernel 4	I _{OUT} = 100mA		128		mV
	Dropout Voltage ⁽⁶⁾	Channel 1	I _{OUT} = 200mA		256		
$V_{IN} - V_{OUT}$	Diopout voltage	Channel 2	I _{OUT} = 100mA		237		
		Channel 2	I _{OUT} = 200mA		427		
 _	Thormal Drotaction	Thermal Protection Temperature			180		°C
T _{PROTECTION}	Thermal Protection Protection Hysterisys		lysterisys		30		
PSRR	Ripple Rejection	f = 100 Hz, Vin=4.5V,Vp-p=1V,Iout=100mA			60		dB
	Outlease at Ourreat	No Load			110		
Ι _Q	Quiescent Current	I _{OUT} = 100mA (Both Channel)			125		μA
	Enable Input	Voltage Increasing, Output Turns On, Logic High		1.6			V
V _{TH(EN)}	Threshold Voltage	Voltage Decreasing, Output Turns Off, Logic Low				0.4	V
l _{leak}	Shutdown Supply Current					5	uA
1	Current Limit	Chann	el 1	200		m۸	
I _{MAX}		Channel 2		200			mA

Note 1: Exceeding the absolute maximum rating may damage the device.

Note 2: The device is not guaranteed to function outside its operating range.

Note 3: The maximum allowable power dissipation at any T_A (ambient temperature) is calculated using: P_{D(MAX)} =

 $(T_{J(MAX)} - T_A)/\Theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See "Thermal Consideration" section for details.


Note 4: Output voltage temperature coefficient is the worst case voltage change divided by the total temperature range.

- **Note 5:** Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 10mA to 200mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- Note 6: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Typical Operating Characteristics

Revision 9/4/2008

Application Hints

Like any low dropout regulator, SE5221 requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance.

Input Capacitor

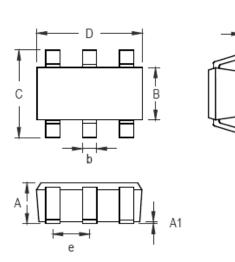
An input capacitor of at least 1µF is required. Electrolytic or Ceramic or Tantalum can be used. The value can be increased without upper limit.

Output Capacitor

An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. Electrolytic or Ceramic or Tantalum can be used. The minimum value is 1µF but may be increased without limit.

Thermal Considerations

It is important that the thermal limit of the package is not exceeded. The SE5221 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be gradually pulled to ground as load continued to increase. The power dissipation for a given application can be calculated as following:


The power dissipation (P_D) is P_D = I_{OUT} * [V_{IN} - V_{OUT}]

The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, TA is the ambient temperature, and Θ_{JA} for SOT-23-6 is around 230°C/W for SE5221. SE5221 is designed to enter thermal protection at 120°C. For example, if T_A is 25°C then the maximum P_D is limited to about 0.4W. In other words, if $I_{OUT(MAX)} = 200$ mA, then $[V_{IN} - V_{OUT}]$ cannot exceed 2V.

OUTLINE DRAWING SOT-23-6L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.889	1.295	0.031	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.560	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

Customer Support

Seaward Electronics Incorporated - China

Section B, 2nd Floor, ShangDi Scientific Office Complex, #22 XinXi Road

Н

Haidian District, Beijing 100085, China

Tel: 86-10-8289-5700/01/05

Fax: 86-10-8289-5706

Seaward Electronics Corporation - Taiwan

2F, #181, Sec. 3, Minquan East Rd,

Taipei, Taiwan R.O.C

Tel: 886-2-2712-0307

Fax: 886-2-2712-0191

Seaward Electronics Incorporated – North America

1512 Centre Pointe Dr.

Milpitas, CA95035, USA

Tel: 1-408-821-6600

Last Updated - 9/4/2008

Revision 9/4/2008